Cathedral Brasilia Part 1

Introduction:

The lesson involves the start of making a representative model an iconic cathedral in Brasilia. The Cathedral Brasilia, designed by Oscar Niemeyer, is a hyperboloid structure constructed from 16 hyperbolic concrete columns. This exercise demonstrates the practical use of conic sections and parabolic structures in civil engineering. For more information see below:

- https://www.youtube.com/watch?v=ZKlhOG04ncw
- GPS co-ordinates: $15^{\circ} 47^{\prime} 54.4^{\prime \prime} \mathrm{S} 47^{\circ} 52^{\prime} 31.1^{\prime \prime} \mathrm{W}$

Learning Intentions:

This lesson will focus on using the use of the conic and block command.
The lesson will also use the following commands: segment, block, loft, circular pattern, cut with surface,

[^0]
Prerequisite knowledge:
 Knowledge of the following commands are required in this lesson: Sketching, Loft, Extruded Boss/Base, Adding Appearances,

Make
Edit
Insert.

Assembly Folder

Create a folder called Cathedral Brasilia and save Cathedral Brasilia Frame. This folder will be used to save all related files; parts, assemblies, drawings etc.

New Part

Start by creating a New Part and saving this part as "Cathedral Brasilia Frame" in folder created earlier

Note: this part will be used in a later exercise to complete the building

Change Units

Create the throat circle sketch

Start by creating reference plane 26metres above Top Plane
Press \mathbf{F} to see plane
Sketch circle on plane and make for construction

Select Segment command. Select circle and divide into 16 points

Draw a midpoint line through the midpoint of one of the segments to the centre of the circle.
Make for construction

Creating the Hyperbolic sketch path

Exit sketch and select Reference Geometry Plane using the midpoint line and Top Plane as references.

Create the following sketch on plane (in metres)

Select Conic command and draw conic using the 30 m lines $1^{\text {st }}$, then centre line for the vertex and finally the " x " co-ordinate

Define the top vertex " x " co-ordinate

by adding a dimension.

RHO VALUE:

If you click on a conic in SolidWorks you will see a list of properties/relations. If you imagine the conic as a rounded corner, then Rho is the ratio of the distance of the peak of the rounded corner to the sharp corner (D1/D2). If Rho is 0.5 , then the conic is a parabola. If Rho is greater than 0.5 , then the conic is a hyperbola. If Rho is less than 0.5 , then the conic is an ellipse

Exit the sketch

Create the Loft Profile Sketches

Create another reference plane coincident with the top of the hyperbolic sketch and parallel to Plane 1

Create another sketch as shown below on Plane 1(where the throat circle was drawn earlier). Use the convert entities command to select a segment of the circle constructed earlier.

To use this profile sketch again on the top and bottom of the hyperbolic path, make a block. Select the three lines of the sketch and select the midpoint of the arc as the insertion point.

Create a sketch on the Top Plane. Insert the block, changing the scale to $\mathbf{0 . 5}$ and coincident with the end of the hyperbolic sketch.

Repeat the block command using the same method and details on Plane $\mathbf{3}$ on the top of the hyperbolic path

Create the Loft

Select the Loft command and use the hyperbolic curves as the path and the 3 triangular sketches as the profiles

Create a Base circle

Create a sketch on the Top Plane. Draw to concentric circles coincident with its centre on the origin and their radii the base points of the hyperboloid

Extrude 0.1m

Complete Structure

Create Circular Pattern by selecting the centre line as axis and loft as the feature to pattern 16 instances, equal spacing

Insert a plane 40m above the Top Plane. Use the Cut with surface command to remove the top of the structure with this surface plane

Chamfer the tops of the hyperboloids using the dimensions below.

The cathedral frame is now complete.

[^0]: ${ }^{1}$ https://upload.wikimedia.org/wikipedia/commons/8/8c/Brasilia_Cathedral_by_Adonai_Rocha.png

